
•

I

J

•

LBL-28881
UC-405

ITtI Lawrence Berkeley Laboratory
Ii:II UNIVERSITY OF CALIFORNIA

Accelerator & Fusion
Research Division

COSY INFINITY Reference Manual

M. Berz

July 1990

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. Neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represenls that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark. manufacturer, or other
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof, or The Regents of the University of Cali
fornia. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the
University of Cali fomi a and shall not be used for advertising or
product endorsement purposes.

Available to DOE and OOE Conlracton from the
Office of Scientific and Technical Infonnation

P.O. Box 62. O.Jc Ridge, TN 37831
Prices available from (615) 576·84()I, F'IS 626-84{)1

Available to the public from
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rood, Springfield, VA 22161

Price: Printed Copy A03, Microfiche AOl

Lawrence Berkeley Laboratory Is an equal opportunIty employer.

COSY INFlNlTY REFERENCE MANUAL *

Martin Berz

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory

1 Cyclotron Road
Berkeley, CA 94720

July 1990

LBL-28881
ESG Note-l03

*This work was supported by the Director, Office of Energy Research, Office of
Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of
Energy under Contract No. DE-AC03-76SFOOO98.

•

COSY INFINITY
Reference Manual

M. Berz

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory

1 Cyclotron Road
Berkeley, CA 94720

Abstract

This is a reference manual for the arbitrary order particle optics
and beam dynamics code COSY INFINITY. It is current as of June
28, 1990. COSY INFINITY is a code to study and design particle
optical systems, including beamlines, spectrometers, and particle ac·
celerators. At its core it is using differential algebraic (DA) methods,
which allow a very systematic and simple calculation of high order
effects. At the same time, it allows the computation of dependences
on system parameters, which is often interesting in its own right and
can also be used for fitting.

COSY INFINITY has a full structured object oriented language
environment . This provides a simple interface for the casual user.
At the same time, it offers the demanding user a very flexible and
powerful tool for the study and design of systems, and more generally,
the utilization of DA methods.

The power and generality of the environment is perhaps best demon·
strated by the fact that the physics routines of COSY INFINITY are
written in its own input language and are very compact. The approach
also considerably facilitates the implementation of new features be
cause they are incorporated with the same commands that are used
for design and study.

1

Contents

1 How to Obtain and Use the Code 2

2 How to Install the Code 3

3 Introduction and Philosophical Questions 5

4 General Properties of the COSY Language Environment 7

5 The Syntax of the COSY Language 8

6 Error Messages 14

7 The Ion Optics Environment of COSY INFINITY 15

8 Examples 19

9 Further Development 22

10 Appendix: Momentary Types and Operations 26

1 How to Obtain and Use the Code

The code to COSY INFINITY can be requested from us at the address on
the cover of this manual. It can be obtained by email, or on various tapes
and floppies. In the latter case, the user is requested to furnish the media.

Users are requested not to make the code available to others, but ask
them to obtain it from us. We want to maintain a list of users to be able to
send out regular updates; in particular, the structure of the COSY language
is hoped to foster self-growth, and all users should benefit from this.

2

Though we do our best to keep the code bug free and hope that it is so
now, we do not mind being convinced of the contrary and ask users to report
any errors. Users are also encouraged to make suggestions for upgrades, or
send us their tools written in the COSY language.

If the user thinks the code has been useful for a project, we would like
to see this acknowledged by referencing some of the papers related to the
code, for example [1, 2]. Finally, we do neither guarantee correctness nor
usefulness of this code, and we are not liable for any damage, material or
emotional, that results from its use.

2 How to Install the Code

The code for COSY INFINITY consists of the following files:

• FOXY.FOP

• DAFOX.FOP

• FOXFIT.FOP

• COSY.FOX

If obtained by electronic mail, each of these files will be split into several
pieces. The pieces can be identified by the filename followed by the part
number in the subject; for example, DAFOX.FOP003 identifies the third part
of the file DAFOX. The files then have to be reassembled before compilation.

FOXY.FOP is the compiler and executer of the COSY language and is
written in FORTRAN 77. DAFOX.FOP contains the routines to perform el
ementary operations, in particular the differential algebraic routines, written
in FORTRAN 77. FOXFIT.FOP contains the package of nonlinear optimiz
ers, written in FORTRAN 77. These three files have to be compiled and
linked. COSYFOX contains all the physics of COSY INFINITY, and is
written in its own input language. It is compiled by FOXY.

3

COSY INFINITY is written in standard FORTRAN 77, and unusual con
structs are avoided as far as possible. However, certain things in FORTRAN
77 are still system dependent; in particular, this concerns the file handling.
COSY INFINITY contains the proper code for various machines, including
VAX/VMS, SUN/UNIX, IBM, and CRAY (which is not fully complete at
this time).

This is achieved by selectively commenting and un-commenting certain
lines. To go from VAX to SUN, for example, all lines that have the identified
*VAX somewhere in columns 72 through 80 have to be commented, and all
lines that have the comment *SUN in columns 1 through 4 have to be un
commented. There is a utility FORTRAN program called VERSION that
performs all these changes automatically. Should the user still experience
problems, a short message to us would be appreciated in order to facilitate
life for future users on the same system.

There may also be some memory limitations. Being based on FORTRAN
which does not allow dynamic memory allocation COSY INFINITY has its
own memory management that is based on a large COMMON block. On
machines supporting virtual memory, the size of this block should not rep
resent any problem. On other machines, it may be necessary to scale the
length down. This can be achieved by changing the parameter LMEM at all
occurrences in FOXY.FOP and DAFOX.FOP to the same value. Values of
around 100000 should be enough for many applications, which brings total
system memory down to a little over 1 Megabyte.

In the case of limited memory resources, it may be necessary to scale down
the lengths of certain variables in COSY.FOX to lower levels. In particular,
this holds for the variables MAP and SCR which are defined at the very
beginning of COSY.FOX. Possible values for the length are values down to
about 500 for work through around fifth order. For higher orders, larger
values are needed.

4

3 Introduction and Philosophical Questions

From the very beginning, the design and analysis of particle optical systems
has been quite intimately connected with the computer world. There are
numerous more or less widespread codes for the simulation of particle opti
cal systems. Generally, these codes fall into two categories. One category
includes ray tracing codes which use numerical integrators to determine the
trajectories of individual rays through external and possibly internal electro
magnetic fields. The core of such a code is quite robust and easy to set up;
for some applications, however, the mere values of final positions of rays is
not enough information. Furthermore, this type of code usually is quite slow
and does not allow extensive optimization.

The other category of codes are the mapping codes, which compute Taylor
expansions to describe the action of the system on phase space. These codes
usually are much faster than integration codes, and the expansion coefficients
often provide more insight into the system. On the other hand, the orders
of the map, which are a measure of the accuracy of the approach, have been
limited to third order [3, 4, 5] and fifth order [6, 7]. Furthermore, traditional
mapping codes had only very limited libraries for quite standardized external
fields and lacked the flexibility of the numerical integration techniques.

Recently we could show that it is indeed possible to have the best of both
worlds: using the new differential algebraic techniques, any given numerical
integration code can be modified such that it allows the computation of
Taylor maps for arbitrarily complicated fields and to arbitrary order [8, 9,
10, 11]. An offspring of this approach is the computation of maps for large
accelerators where often the system can be described by inexpensive, low
order integrators [12, 13].

The speed of this approach is determined by the numerical integration
process. Recently it has been possible to use D A techniques to overcome this
problem: DA can be used to automatically emulate numerical integrators of
very high order in the time step, yet at the computational expense of only
little more than a first order integrator [8, 9]. This technique is very versatile,
works for a very large class of fields, and the speeds obtained are those of
classical mapping codes. Hence these techniques seem very promising for

5

new generation mapping codes.

In order to make efficient use of DA operations in a computer environ
ment, it has to be possible to invoke the DA operations from a language. In
the conventional languages used for numerical applications it is not possible
to introduce new data types and operations on them. Only recently have ob
ject oriented languages been developed which routinely have such features.
One such language which is slowly gaining ground is C++; Forth is another
example which has been around for a longer time.

There are strong reasons to stay within the limits of a FORTRAN envi
ronment, however . Firstly, virtually all software in this field is written in this
language, and the desire to interface to such software almost requires the use
of FORTRAN. Furthermore, there are extensive libraries of support software
which are only slowly becoming available in other languages, including rou
tines for nonlinear optimization and various graphics packages. Finally, the
necessity for portability is another strong argument for FORTRAN; virtu
ally every machine that is used for numerical applications, starting from per
sonal computers, continuing through the workstation and mainframe world
through the supercomputers, has a FORTRAN compiler.

So it seemed natural to stay within this world, and this lead to the de
velopment of the DA precompiler [14, 15]. This precompiler allows the use
of a DA data type within otherwise standard FORTRAN by transforming
arithmetic operations containing DA variables into a sequence of calls to sub
routines. This technique has been extensively used [9, 10, 16, 17, 18, 19]. It
was particularly helpful that one could use old FORTRAN tracking codes and
just replace the appropriate real variables by DA variables to very quickly
obtain high order maps.

On the other end of the problems using an accelerator code is the com
mand language of the code and the description of the beamlines. Various
approaches have been used in the past, starting from coding numbers as in
the old versions of TRANSPORT [3] over more easily readable command
structures like in TRIO [4], GIOS [5, 20], COSY 5.0 [6, 17] and MARYLIE
[21] to probably the most complete, standardized commands of MAD [22].

6

4 General Properties of the COSY Language
Environment

Probably the best way to allow the user flexibility is to provide him with
an environment that in itself is a full programming language. Then he can
express any problem that can be expressed on a computer within this envi
ronment. Furthermore, if the code itself is written in the same language, it is
rather easy even for the users to add new features to the code by themselves,
allowing the code to grow naturally.

The question is which language to select. For ease of use, it should have
a very simple syntax. For the user demanding special-purpose features, it
should be powerful. It should allow direct and complex interfacing to FOR
TRAN routines, and it should allow the use of DA as a type. Finally, it
should be widely portable.

Unfortunately, there is no language readily available that fulfills all these
requirements. So we decided to develop our own language environment.

The problem of simplicity yet power has been quite elegantly solved by the
PASCAL concept. In addition, this concept allows compilation in one pass
and no time consuming linking is required. This facilitates the connection
of the user input, which will turn out to be just the last procedure of the
system, with the optics program itself.

To be machine independent, the output of the compilation is not machine
code but rather an intermediate code that can be easily interpreted. For the
same reason, it is essential to write the source code of the compiler in a very
portable language. We chose FORTRAN even for this task, even though it
is considerably easier to write such a compiler in a recursive language.

Details abou t the language syntax are described in a language description
data file which is read by a program that updates the compiler. The first
entry in this data file is a list of the names of all data types. The second
entry is a list containing the elementary operations, information for which
combinations of data types they are allowed, and the names of individual
FORTRAN routines to perform the specific operations.

7

The third entry contains all the intrinsic functions and the types of their
results. The fourth entry finally contains a list of FORTRAN procedures
that can be called from the environment .

All these data are read from a program that updates the compiler; in
particular, it includes all the intrinsic operations, functions and procedures
into the routine that interprets the intermediate code.

For reasons of speed it is helpful to allow the splitting of the program
into pieces, one containing the optics program and one the user commands .
While the PASCAL philosophy does not have provisions for linking, it al
lows the splitting of the input at any point. For this purpose, a complete
momentary image of the compilation status is dumped to a file. When com
pilation continues with the second portion, this image is read from the file,
and compilation continues in exactly the same way as without the splitting.

5 The Syntax of the COSY Language

In this section we will discuss the syntax of the COSY language. It will
become apparent that the language has the flavor of PASCAL, which is
particularly easy to learn yet quite powerful and relatively easy to analyze
by a compiler.

The language of COSY differs from PASCAL in its object oriented fea
tures. New data types and operations on them can easily be implemented
by putting them into the language description file described above. Fur
thermore, all type checking is done at run time, not at compile time. This
has significant advantages for the practical use of DA and will be discussed
below.

Throughout this section, curly brackets like "{" and "}" denote elements
that can be repeated.

Most commands of the COSY language consist of a keyword, followed
by expressions and names of variables, and terminated by a semicolon. The
individual entries and the semicolon are separated by blanks. The exceptions
are the assignment statement, which does not have a keyword but is identified

8

by the assignment identifier :=, and the call to a procedure, in which case
the procedure name is used instead of the keyword.

Line breaks are not significant; commands can extend over several lines,
and several commands can be in one line. To facilitate readability of the
code, it is possible to include comments. Everything contained within a pair
of curly brackets" {" and"}" is ignored.

Each keyword and each name consist of up to 32 characters, of which the
first has to be a letter and the subsequent ones can be letters, numbers or
the underline sign" _" . The case of the letters is not significant.

The language consists of a tree-structured arrangement of nested program
segments. There are three types of program segments. The first is the main
program, which begins at the top of the input file and ends at the end. It is
enclosed between the keywords

BEGIN;

and

END;

The other two types of program segments are procedures and functions.
Their beginning and ending are denoted by the commands

PROCEDURE <name> { <name> }

and

ENDPROCEDURE;

as well as

FUNCTION <name> {<name> } ;

END FUNCTION ;

The first name identifies the procedure and function for the purpose of
calling it . The optional names define the local names of variables that are
passed into the routine. Like in other languages, the name of the function
can be used in arithmetic expressions, whereas the call to a procedure is a
separate statement.

9

Inside each program segment, there are three sections. The first section
contains the declaration of local variables, the second section contains the
local procedures and functions, and the third section contains the executable
code. A variable is declared with the following command:

VARIABLE <name> <expression> {<expression> }

Here the name denotes the identifier of the variable to be declared. As
mentioned above, the types of variables are free at declaration time. The next
expression contains the amount of memory that has to be allocated when
the variable is used. The amount of memory has to be sufficient to hold the
various types that the variable can assume. To simplify the determination
of the required memory, there are various functions that return the required
lengths for certain types.

If the variable is to be used with indices as an array, the next expressions
have to specify the different dimensions. Note the elements of an array can
have different types. Thus it is possible to emulate most of the record concept
found in PASCAL using arrays.

Note that different from PASCAL practice, names of variables that are
being passed into a function or procedure do not have to be declared.

All variables are visible inside the program segment in which they are
declared as well as in all other program segments inside it. In case a variable
has the same name as one that is visible from a higher level routine, its name
and dimension override the name and properties of the higher level variable
of the same name for the remainder of the procedure and all local procedures.

The next section of the program segment contains the declaration of lo
cal procedures and functions. Any such program segment is visible in the
segment in which it was declared and in all program segments inside the seg
ment in which it was declared, as long as the reference is physically located
below the declaration of the local procedure. Recursive calls are permitted.
Altogether, the local and global visibility of variables and procedures follows
standard structured programming practice.

The third and final section of the program segment contains executable
statements. Among the permissible executable statements is the assignment
statement , which has the form

10

<variable or array element>:= <expression>;

The assignment statement does not require a keyword. It is character
ized by the assignment identifier :=. The expression is a combination of
variables and array elements visible in the routine, combined with operands,
following common practice. Note that due to the object oriented features,
various operands can be loaded for various data types, and default hierarchies
for the operands can be given. Parentheses are allowed to override default
hierarchies. The indices of array elements can themselves be expressions .

Another executable statement is the call to a procedure. This statement
does not require a keyword either. It has the form

<procedure name> {<expression>};

The name is the identifier of the procedure to be called which has to be
visible at the current position. The rest are the arguments passed into the
procedure. The number of arguments has to match the number of arguments
in the declaration of the procedure.

Besides the assignment statement and the procedure statement, there
are statements that control the program flow. These statements consist of
matching pairs denoting the beginning and ending of a control structure and
sometimes of a third statement that can occur between such beginning and
ending statements. Control statements can be nested as long as the beginning
and ending of the lower level control structure is completely contained inside
the same section of the higher level control structure.

The first such control structure begins with

IF <expression> ;

which later has to be matched by the command

END IF ;

If desired, there can be an arbitrary number of statements of the form

ELSEIF <expression> ;

between the matching IF and ENDIF statements.

11

If there is a structure involving IF, ELSEIF and ENDIF, the first ex
pression in the IF or ELSEIF that is of logical type and has value true,
if there is one, is determined. If there is no such expression, execution is
continued after the ENDIF; otherwise, the section following the first such
expression up to the next ELSEIF or ENDIF is executed, after which ex
ecution is continued after the ENDIF statement. So at most one of the
sections of code separated by IF and the matching optional ELSEIF and
the ENDIF statements is executed.

The next such control structure consists of the pair

WHILE <expression> ;

and

ENDWHILE;

If the expression is of type logical and has the value true execution is
continued after the WHILE statement; otherwise, it is continued after the
END WHILE statement. In the former case, execution continues until the
END WHILE statement is reached. After this, it continues at the matching
WHILE, where again the expression is checked. Thus, the block is run
through over and over again as long as the expression has the proper value.

Another such control structure is the familiar loop, consisting of the pair

LOOP <name> <expression> <expression> {<expression > } ;

and

ENDLOOP;

Here the first entry is the name of a visible variable which will act as
the loop variable, the first and second expressions are the first and second
bounds of the loop variable. If a third expression is present, this is the step
size; otherwise, the step size is set to 1. Initially the loop variable is set to
the first bound.

If the step size is positive or zero and the loop variable is not greater
than the second bound, or the step size is negative and loop variable is
greater than the second bound, execution is continued at the next statement,

12

otherwise after the matching ENDLOOP statement. When the matching
ENDLOOP statement is reached after execution of the statements inside
the loop, the step size is added to the loop variable. Then, the value of the
loop variable is compared to the second bound in the same way as above,
and execution is continued after the LOOP or the ENDLOOP statement,
depending on the outcome of the comparison. Note that it is allowed to
alter the value of the loop variable inside the loop, which allows a premature
truncation of the loop.

The final control structure in the syntax of the COSY language allows
nonlinear optimization as part of the syntax of the language. This is an
unusual feature not found in other languages, and it could also be expressed
in other ways using procedure calls. But the great importance of nonlinear
optimization in applications of the language and the clarity in the code that
can be achieved with it seemed to justify such a step. The structure consists
of the pair

FIT <name> {<name>} ;

and

END FIT <expression> <expression> <expression> ;

Here the names denote the visible variables that are being adjusted. The
first expression is of real or integer type and denotes the objective quantity,
the quantity that has to be minimized. The second expression is the tolerance
to which the minimum is requested. The third expression gives the number
of the optimizing algorithm that is being used. Currently, there is only the
simplex algorithm, denoted by the value 1.

This structure is run through over and over again, where for each pass the
optimization algorithm changes the values of the variables listed in the FIT
statement and attempts to minimize the objective quantity. This continues
until the algorithm does not succeed in decreasing the objective quantity
anymore by more than the tolerance. After the optimization terminates, the
variables contain the values corresponding to the lowest value of the objective
quantity encountered by the algorithm.

Besides the commands just presented, there are commands for i/o. They
appear as commands and not as procedure calls because they have variable

13

number of arguments. They have the form

READ <expression> <name> ;

and

WRITE <expression> {<expression>} ;

Here the first expression stands for a unit number; unit 6 is the screen.
In the READ command, the name denotes the variable to be read. Note
that right now only real numbers can be read. In the WRITE command, the
expressions following the output unit are the output.

6 Error Messages

COSY distinguishes between four different kinds kinds of error messages
which have different meanings and require different actions to correct the
problem. The four types of error messages are identified by the symbols ###,

$$$, ! ! ! and IDIDID. Their meaning is as follows.

###: This kind of message denotes errors in the syntax of the user input.
Usually a short message describing the problem is given, including the com
mand in error. If this is not enough information to remedy the problem,
the file <inputfile>.lis can be consulted. It contains an element-by-element
listing of the user input, including the error messages at the appropriate
positions.

$$$: This error message denotes runtime errors in a syntactically correct user
input. These errors include array bound violations, type violations, missing
initialization of variables, variable memory exhaustion, and illegal operations
like division by zero.

I I I: This kind of message denotes exhaustion of certain internal arrays in the
compiler. Since the basis of COSY is FORTRAN which is not recursive and
requires a fixed memory allocation, all arrays used in the compiler have to be
previously declared. This entails that in certain cases of big programs etc.,
the upper limits of the arrays can be reached. In such a case the user is told
which parameter has to be increased. The problem can be fixed by replacing

14

the value of the parameter by a larger value. Note that all occurrences of
the parameter have to be changed; usually the parameters occur under the
same name in many subroutines.

IQIQIQ: This kind of message describes a catastrophic error, and should never
occur with any kind of user input , erroneous or not. It means that COSY
has found an internal error in its code by using certain self checks. In the
rare case that such an error message is encountered, the user is kindly asked
to contact us and submit the input deck.

7 The Ion Optics Environment of COSY IN
FINITY

In this section we want to describe some core features of COSY's ion optics
environment. This provides the backbone for practical use in particle op
tics. We assume that the reader has a fundamental knowledge about particle
optics, and refer to the vast literature, for example [23 ,24,25, 26J.

The physics part of COSY INFINITY is written in its own input lan
guage. In this context, most commands are just calls to previously defined
procedures. If desired, the user can create new commands simply by defining
procedures of his own.

The user input is nothing but the last procedure in COSY INFINITY. It
must be included between the statements

PROCEDURE RUN;

and

ENDPROCEDURE;

The last command has to be followed by the call to the procedure,

RUN;

and the command to complete the COSY input file,

END;

15

The first set of commands prepares the computation of the maps. The
very first command sets up the DA tools and has to be called before any
DA operations, including the computation of maps, can be executed. The
command has the form

OV <order> <number of variables> ;

and the parameters are the maximum order that is to occur as well as the
maximum number of independent variables. If no dependences on system
parameters are requested, this is just the number of phase space variables.

The following command is used to prepare the computation of maps. It
sets the transfer map (which can be found in the global array MAP) to unity.
It can also be used later on to erase the map.

UM ;

The following command sets the initial energy, mass and charge of the
reference particle.

RP < energy in MeV > < mass in amu > < charge in units > ;

The command

PS < PX > < PA > < PY > < PB > < PD > < PG >

sets half widths of the beam in the x, a, y and b directions of phase space
as well as energy and mass spread of the beam. The command

BETA < BX > < BY > ;

computes the momentary values of the beta functions in x and y directions,
while

WAIST < LX > < LY > ;

computes the distances to the next waist in x and y directions, and

IMAGE < LX > < LY > ;

computes the distances to the next image in x and y directions. The com
mand

PM < unit>

16

prints the transfer matrix to unit. unit = 6 corresponds to the screen.

DL < length> ;

lets a field free drift act on the map. The commands

MQ < length> < flux density at pole tip> < aperture> ;

MH < length> < flux density at pole tip > < aperture> ;

MO < length> < flux density at pole tip> < aperture> ;

MD < length> < flux density at pole tip> < aperture> ;

MZ < length> < flux density at pole tip> < aperture> ;

let a magnetic quadrupole, sextupole, octupole, decapole or duodecapole
act on the map.

MM < length> < BQ >< BH >< BO >< BD >< BZ >
< aperture> ;

lets a superimposed magnetic multi pole with components BQ through BZ
act on the map.

MMPOLE < length> < MA > < NMA > < aperture> ;

lets a superimposed magnetic multi pole act on the map. Contrary to the
previous procedure, the arguments now are the array MA of NMA multipole
terms.

EQ < length> < voltage at pole tip> < aperture> ;

EH < length> < voltage at pole tip> < aperture> ;

EO < length > < voltage at pole tip> < aperture> ;

ED < length> < voltage at pole tip> < aperture> ;

EZ < length> < voltage at pole tip> < aperture> ;

lets an electric quadrupole, sextupole, octupole, decapole or duodecapole
act on the map.

EM < length >< EQ >< EH >< EO >< ED >< EZ >

17

< aperture> ;

lets a superimposed electric multipole with components EQ through EZ
act on the map.

Similar to MMPOLE is the procedure

EMPOLE < length> < EA > < NEA > < aperture>

The next two commands let an inhomogeneous bending magnet or elec
trostatic deflector act on the map:

MS < radius > < angle> < aperture>
< nl >< nz >< n3 >< n4 >< ns > ;

ES < radius> < angle> < aperture>
< nl >< nz >< n3 >< n4 >< ns > ;

The indices ni describe the midplane radial field dependence which is
given by

s x .
F(r) = Fo' [1 + Lni' (-)']

i=l r

where r is the bending radius. The command

CB ;

(1)

changes the bending direction of bending magnets and deflectors. Ini
tially, the bending direction is clockwise. The procedure CB changes it to
counterclockwise, and each additional CB switches it to the other direction.

To address individual matrix elements rather than whole maps, there is
the function

ME «phase space variable >,< element identifier»

For example, ME(1,12) returns the momentary value of the matrix ele
ment (x,xa).

The following function computes the Poisson bracket between two DA
vectors and is essential for many Lie algebraic operations:

18

PB « a >,< b»

In this section we gave a brief list of some of the important routines
In COSY INFINITY. We again want to stress that it is not the philoso
phy of COSY INFINITY to provide commands for all conceivable questions.
Rather, we want to provide the sophisticated user with a simple environment
that easily allows him to construct such commands himself. The next section
will contain some examples for such situations.

8 E x amples

In this section we will give some practical examples how the COSY INFIN
ITY concept can be used in practice. We begin with a simple problem,
namely the computation of the transfer map of a quadrupole dublet to tenth
order. Here the COSY input resembles the input of many other optics codes
[6, 5).

PROCEDURE RUN
OV 10 4
RP . 1 4 2
UM
DL . 1
MQ .2 . 1 .05 ;
DL .1
MQ .2 - . 1 .05 ;
DL . 1
PM 11
END PROCEDURE
RUN; END;

{sets or der t o 10 and number of variabl es to 4}
{energy: 10 MeV, mass: 4 amu, Charge: 2 units}

{drift of l ength .1 m}
{quadrupol e of l ength .2 m, t i p f i e l d . 1 T,

aperture .05 m}
{defocussing quadrupo l e}

{prints map t o unit 11}

In the next example, we compute the map depending on the energy and
mass of the particle as well as on the strength of a quadrupole. Here the
intrinsic COSY function DA(n) is used , which returns the DA vector that is
zero except for a 1 in slot n (compare [8, 9)). This shows how simple it is to

19

fully treat all system parameter dependences using DA techniques as long as
types are checked only at run time.

PROCEDURE RUN ;
OV 5 7 ; {sets order to 5 and number of variables to 7}
RP .1 4*(1+DA(5» 2*(1+DA(6»; {sets energy, mass and charge;

now mass and charge are DA quantities}
UM
DL .1 {drift
MQ .2 .1*(1+DA(7» .05 ;
DL .1
MQ .2 -.1 .05
DL .1

of length . 1 m}
{quadrupole; now field is a DA quantity}

PM 11 {prints map, containing dependence on energy,
mass and quadrupole strength, to unit 11}

END PROCEDURE
RUN; END;

Next we will show an example with optimization. A t riplet is fitted to
perform stigmatic point-to-point imaging. After the imaging is completed,
the triplet is placed in series 10 times as a simple beam guidance system. The
total map is written to the screen, and depending on its elements, the user
can start the optimization again with different parameters. For this purpose,
t he intrinsic COSY procedures READ and WRITE are used.

PROCEDURE RUN
VARIABLE V1 1 ; VARIABLE V2 1 ; VARIABLE V3 1 ;
VARIABLE I 1; VARIABLE L 1; {defines local variables}
PROCEDURE TRIPLET LAB C ; {defines a section of a beamline}

DL L ; MQ .1 A .05 ; DL .05 ;
MQ . 1 B .05 ; DL .05 ; MQ .1 C .05 DL L ;

END PROCEDURE
OV 3 4 ; L .- 1 . ,
V1 : = . 1 V2 .- -.2 V3 : = . 1
WHILE V2

FIT V1 V3 ;

20

UM ; TRIPLET L V1 V2 V3 ;
OBJ := ABS(ME(1,2)) + ABS(ME(3,4))

ENDFIT OBJ 1E-12 1

UM ; LOOP I 1 10 ; TRIPLET L V1 V2 V3
WRITE 6 V2 L ; READ 6 V2 ; READ 6 L ;

ENDWHILE ;

ENDLOOP PM 6

This example shows how it is possible to phrase more complicated inter
active optimization tasks in the COSY language. To conclude our short list
of examples, we want to show how a user can define his own particle optical
element and work with it. For reasons of simplicity, we choose an optical lens
with focal length F. We do not consider spherical aberrations, but want to
correct the chromatic effects. To describe the action of the lens, we follow the
DA prescription to just perform ray trace operations using DA objects [8 , 9]
and make use of the global DA variable MAP which contains the momentary
derivatives of the transfer map.

PROCEDURE RUN ;
VARIABLE S 1 ;
PROCEDURE LENS F D ; {lets a lens with reference focal length

F made of glass with dispersion D act on the map}
MAP(2) := MAP(2) - MAP(1)/F*(1+D*DA(5))
MAP(4) := MAP(4) - MAP(3)/F*(1+D*DA(5))

END PROCEDURE

OV 2 5 ;
S := -1

FIT S ;
UM; LENS 1 .01; DL .01 ;
ENDFIT ABS(ME(1,25)) 1E-12 1 ;

PM 6 ;
END PROCEDURE ; RUN ; END

LENS S .005

This concludes our short list of examples. It should be quite obvious how
much more complicated problems can be treated.

21

9 Further Development

We hope that COSY INFINITY philosophy will eventually make it possible
to incorporate new features developed by individual users into the master
version. But until then, we will continue upgrading the features of the optics
environment, and plan to have a new release of the program several times
per year.

Besides, there are still fundamental things that have to be provided
shortly. First and foremost, this includes graphics. Being helpful and es
sential for design and study of bearnlines and accelerators, graphics is by far
not as standardized as FORTRAN, the language in which COSY INFINITY
is written. To account for this fact, all graphics will be output to an ASCII
graphics metafile containing only move and draw commands as well as output
of single characters.

This metafile can then be interpreted within any graphics environment
with ease. Note that this approach is not necessarily restricted to a viewing of
the graphics after everything is done. Since it is possible to initiate operating
system commands from within COSY INFINITY, it is possible to initiate the
graphics post-processing from the program, perhaps in a different window.

Another useful but highly non portable feature is the input of reals
through pointing devices. We are very inclined to develop a tool for such
purposes.

Finally, as far as the physics aspects are concerned, advanced techniques
for symplectic tracking using maps are under development. While it is simple
to build a tracking environment based on symplectic kicks in COSY INFIN
ITY, gains in speed combined with the much more precise description of the
optics including thick elements and fringe fields, makes the tracking with
maps very attractive.

Acknowledgements

This work was supported by the Director, Office of Energy Research, Office of
Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of

Energy under Contract No. DE-AC03-76SFOOO98.

22

For discussions about languages and compilers, I want to thank Dr. Hi
roshi Nishimura, Dipl.-Math. Dipl.-Phys. H. C. Hofmann, and Dipl.- Phys.
Klaus Lindemann. For discussions about optimizers, I would like to thank
Dr. Tom Mottershead. For testing various parts of the DA package, I would
like to thank Dipl.- Phys. Bernd Hartmann and Dipl.-Phys. Stefan Meuser.

Financial support was appreciated from the german Bundesministerium
fiir Forschung und Technologie, the Deutsche Forschungsgemeinschaft, Los
Alamos National Laboratory, the University of Giellen, the SSC Central De
sign Group, and Lawrence Berkeley Laboratory.

Finally, I would like to thank my wife for letting me go on all those
evenings and weekends ...

References

[1] M. Berz. Computational aspects of design and simulation: COSY IN
FINITY. Nuclear Instruments and Methods, in print, 1990.

[2] M. Berz. COSY INFINITY, an arbitrary order general purpose optics
code. AlP Conference Proceedings, in print, 1990.

[3] K. L. Brown. The ion optical program TRANSPORT. Technical Re
port 91, SLAC, 1979.

[4] T. Matsuo and H. Matsuda. Computer program TRIO for third order
calculations of ion trajectories. Mass Spectrometry, 24, 1976.

[5] H. Wollnik, J. Brezina, and M. Berz. GIOS-BEAMTRACE, a computer
code for the design of ion optical systems including linear or nonlinear
space charge. Nuclear Instruments and Methods, A258:408, 1987.

[6] M. Berz, H. C. Hofmann, and H. Wollnik. COSY 5.0, the fifth order
code for corpuscular optical systems. Nuclear Instruments and Methods,
A258:402, 1987.

[7] M. Berz and H. Wollnik. The program HAMILTON for the analytic
solution of the equations of motion in particle optical systems through
fifth order. Nuclear Instruments and Methods, A258:364, 1987.

23

[8] M. Berz. Arbitrary order description of arbitrary particle optical sys
tems. Nuclear Instruments and Methods, in print, 1990.

[9] M. Berz. Differential Algebraic description of beam dynamics to very
high orders. Particle Accelerators, 24:109, 1989.

[10] M. Berz. Differential Algebraic treatment of beam dynamics to very
high orders including applications to spacecharge. AlP Conference P1'O
ceedings, 177:275, 1988.

[11] M. Berz. The Description of Particle Accelerators using High Order
Perturbation Theory on Maps, in: M. Month (Ed), Physics of Particle
Acce/emtors, volume 1, page 961. American Institute of Physics, 1989.

[12] M. Berz. High-order description of accelerators using differential algebra
and first applications to the SSC. In Proceedings Snowmass Summer
Meeting, Snowmass, Co, 1988.

[13] E. Forest and M. Berz. Canonical integration and analysis of periodic
maps using Non-Standard Analysis and Lie methods. In Proceedings
Second Workshop on Lie Methods in Optics, in print, Mexico City, 1988.

[14] M. Berz. The Differential Algebra FORTRAN precompiler DAFOR.
Technical Report AT-3:TN-87-32, Los Alamos National Laboratory,
1987.

[15] M. Berz. The DA precompiler DAFOR. Technical report, Lawrence
Berkeley Laboratory, Berkeley, Ca, 1990.

[16] E. Forest, M. Berz, and J. Irwin. Normal form methods for complicated
periodic systems: A complete solution using Differential Algebra and
Lie operators. Particle Accelerators, 24:91, 1989.

[17] H. Wollnik, B. Hartmann, and M. Berz. Principles behind GIOS and
COSY. AlP Confel'ence Proceedings, 177:74, 1988.

[18] B. Hartmann, M. Berz, and H. Wollnik. The computation of fringing
fields using Differential Algebra. Nuclear Instruments and Methods, in
print, 1989.

24

[19] B. Hartmann, H. Wollnik, and M.Berz. Tribo, a program to determine
high-order properties of intense ion beams. AlP Conference Proceedings,
in print, 1990.

[20] H. Wollnik, J. Brezina, and M. Berz. GIOS-BEAMTRACE, a program
for the design of high resolution mass spectrometers. In Proceedings
A MCO- 7, Darmstadt, 1984.

[21] A. J. Dragt, L. M. Healy, F. Neri, and R. Ryne. MARYLIE 3.0 - a
program for nonlinear analysis of accelerators and beamlines. IEEE
Transactions on Nuclear Science, Ns-3,5:2311, 1985.

[22] C. Iselin and J. Niederer. The MAD program, version 7.2, user's refer
ence manual. Technical Report CERN/LEP-TH/88-38, CERN, 1988.

[23] H. Wollnik. Charged Particle Optics. Academic Press, Orlando, Florida,
1987.

[24] D. C. Carey. The Optics of Charged Particle Beams. Harwood, 1987.

[25] K. G. Steffen. High Energy Beam Optics. Wiley-Interscience, New York,
1965.

[26] M. Born and E. Wolf. Optics.

25

10 Appendix: Momentary Types and Oper
ations

Here we will list all objects as well as all the operands available for various
combinations of objects, the available intrinsic functions, and the available
intrinsic procedures. This information is contained in the language definition
file GENFOX.DAT, which is read by the program FOXTYP.FOR which up
dates the compiler for the COSY language. This information is current as of
28-JUN-90. In this version, the following types are supported:

RE 8 Byte Real Number
ST String
10 Logical
DA Differential Algebra Vector
VE Real Number Vector
CM 8 Byte Complex Number
IN 8 Byte Interval Number

N ow follows a list of all operations available for various combinations
of types. For each operation, a relative priority is given which determines
the hierarchy of the operations in expressions. One can override can these
hierarchies with parentheses .

• + (Addition) has priority 3 and is supported for the following combi
nations of types:

26

Left Type Right Type Type of Result
RE RE RE
RE DA DA
RE VE VE
RE eM eM
RE IN IN
10 10 10
DA RE DA
DA DA DA
VE RE VE
VE VE VE
eM RE eM
eM eM eM
IN RE IN
IN IN IN

• - (Subtraction) has priority 3 and is supported for the following com
binations of types:

Left Type Right Type Type of Result
RE RE RE
RE DA DA
RE VE VE
RE eM eM
RE IN IN
DA RE DA
DA DA DA
VE RE VE
VE VE VE
eM RE eM
eM eM eM
IN RE IN
IN IN IN

• * (Multiplication) has priority 4 and is supported for the following
combinations of types:

27

Left Type Right Type Type of Result
RE RE RE
RE DA DA
RE VE VE
RE eM eM
RE IN IN
10 10 10
DA RE DA
DA DA DA
VE RE VE
VE VE VE
eM RE eM
eM eM eM
IN RE IN
IN IN IN

• / (Division) has priority 4 and is supported for the following combi
nations of types:

Left Type Right Type Type of Result
RE RE RE
RE DA DA
RE VE VE
RE eM eM
RE IN IN
DA RE DA
DA DA DA
VE RE VE
VE VE VE
eM RE eM
eM eM eM
IN RE IN
IN IN IN

•• (Exponentiation) has priority 5 and is supported for the following
combinations of types:

28

Left Type Right Type Type of Result
RE RE RE

• < (Less Than) has priority 2 and is supported for the following com
binations of types:

Left Type Right Type Type of Result
RE RE 10

• > (Greater Than) has priority 2 and is supported for the following
combinations of types:

Left Type Right Type Type of Result
RE RE 10

• = (Equal) has priority 2 and is supported for the following combina
tions of types:

Left Type Right Type Type of Result
RE RE 10

• # (Not Equal) has priority 2 and is supported for t he following com
binations of types:

Left Type Right Type Type of Result
RE RE 10

• & (Concatenate) has priority 2 and is supported for the fo llowing com
binations of types:

Left Type Right Type Type of Result
RE RE VE
RE VE VE
ST ST ST
VE RE VE
VE VE VE

Next we list all intrinsic functions available in the momentary version with
a short description and the allowed types.

29

• TYPE returns the type of an object as a number and is supported for
the following types:

Argument Type Type of Result
RE RE
ST RE
10 RE
DA RE
VE RE
eM RE
IN IN

• LENGTH returns the momentary length of a variable in 8 byte blocks
and is supported for the following types:

Argument Type Type of Result
RE RE
ST RE
10 RE
DA RE
VE RE
eM RE
IN IN

• VARMEM returns the current memory address of an object and is sup
ported for the following types:

Argument Type Type of Result
RE RE
ST RE
10 RE
DA RE
VE RE
eM RE

• VARPOI returns the current pointer address of an object and is sup
ported for the following types:

30

Argument Type Type of Result
RE RE
ST RE
10 RE
DA RE
VE RE
CM RE

• EXP computes the exponential function and is supported for the fo l
lowing types:

Argument Type Type of Result
RE RE
DA DA

• LOG computes the natural logarithm and is supported for the fo llow
ing types:

Argument Type Type of Result
RE RE
DA DA

• SIN computes the sine and is supported for the fo llowing types:

Argument Type Type of Result
RE RE
DA DA

• COS computes the cosine and is supported fo r the fo llowing types :

Argument Type Type of Result
RE RE
DA DA

• TAN computes the tangent and is supported for the following types :

Argument Type Type of Result
RE RE
DA DA

31

• AS IN computes the arc sine and is supported for the following types:

Argument Type Type of Result
RE RE

• ACOS computes the arc cosine and is supported for the following types:

Argument Type Type of Result
RE RE

• ATAN computes the arc tangent and is supported for the following
types :

Argument Type Type of Result
RE RE

• SINH computes the hyperbolic sine and is supported for the following
types:

Argument Type Type of Result
RE RE
DA DA

• COSH computes the hyperbolic cosine and is supported for the follow
ing types:

Argument Type Type of Result
RE RE
DA DA

• TANH computes the hyperbolic tangent and is supported for the fol
lowing types:

Argument Type Type of Result
RE RE
DA DA

• SQRT computes the square root and IS supported for the fo llowing
types:

32

Argument Type Type of Result
RE RE
DA DA

• ISRT computes the reciprocal of square root and is supported for the
following types:

Argument Type Type of Result
RE RE
DA DA

• SQR computes the square and is supported for the following types:

Argument Type Type of Result
RE RE
DA DA

• ABS computes the absolute value and is supported for the following
types:

Argument Type Type of Result
RE RE
DA RE

• NORM computes the norm of a vector and is supported for the follow
ing types:

Argument Type Type of Result
DA RE

• REAL determines the real part and is supported for the following types:

Argument Type Type of Result
RE RE
DA RE
eM RE
IN RE

33

• INT determines the integer part and IS supported for the following
types:

Argument Type Type of Result
RE RE

• NINT determines the nearest integer and is supported for the following
types:

Argument Type Type of Result
RE RE

• DA returns the i th elementary DA vector and is supported for the
following types:

Argument Type Type of Result
RE DA

• IMAG extracts the imaginary part and is supported for the following
types:

Argument Type Type of Result
CM RE

• CONJ conjugates a complex number and is supported for the following
types:

Argument Type Type of Result
CM CM

In addition to the just listed operators and intrinsic functions, the following
intrinsic proced ures are available:

• Procedure MEMALL (1 argument) returns the amount of memory
allocated at this time

• Procedure MEMFRE (1 argument) returns the amount of memory
still available at this time

34

• Procedure DAINI (4 arguments) initializes the order and number of
variables of DA. Arguments are order, number of variables, output unit
number, number of monomials (on return).

• Procedure DANOT (I argument) sets momentary truncation order
for DA.

• Procedure DAEPS (I argument) sets zero tolerance for components
of DA vectors.

• Procedure DAPRY (3 arguments) prints an array of DA vectors.
Arguments are the array, the number of components, and the unit
number.

• Procedure DAPOI (4 arguments) computes the POISSON bracket
between DA vectors. Arguments are the two vectors, the dimensionality
of Hamiltonian space, and the result.

• Procedure DALEX (4 arguments) computes the action c = exp(:b:)a.
Arguments are a,b,c and the dimensionality of Hamiltonian space.

• Procedure DAGMD (4 arguments) computes grad(vl) * v2, where vI
is a DA vector, v2 is an array of DA vectors. Arguments are vI, v2,
the result and dimension of v2.

• Procedure DAFLO (4 arguments) computes the flow of x' = f(x) for
I time unit. Arguments are the initial condition, array of right hand
sides, result, and dim of f.

• Procedure DARAN (2 arguments) fills DA vector with random entries.
Arguments are DA vector and fill factor.

• Procedure DADER (3 arguments) performs the derivation operation
on DA vector. Arguments are the number with respect to which to
differentiate and the two DA vectors.

• Procedure DAINT (3 arguments) performs an integration of a DA
vector. Arguments are the number with respect to which to integrate
and the two DA vectors.

35

• Procedure DAPEE (3 arguments) returns a component of a DA vec
tor. Arguments are the D A vector, the ID for the coefficient in TRANS
PORT notation, and the real component .

• Procedure DACCT (6 arguments) concatenates 2 DA arrays. Argu
ments are the first array, number of elements, second array, number of
elements, third array, number of elements.

• Procedure SUBSTR (4 arguments) computes a substring. Arguments
are string, first and last numbers identifying substring, and substring.

• Procedure VECELE (3 arguments) returns a component of a vector
of reals. Arguments are the vector, the number of the component, and
on return the real value of the component.

• Procedure IMUNIT (1 argument) returns the imaginary unit i.

• Procedure TRUE (1 argument) returns the logical value true.

• Procedure FALSE (1 argument) returns the logical value false .

• Procedure INTERV (3 arguments) produces an interval from 2 num
bers. Arguments are the lower and upper bounds and on return the
resulting interval.

• Procedure INLO (2 arguments) returns the lower bound of an interval.
Arguments are the interval and on return the lower bound.

• Procedure INUP (2 arguments) returns the upper bound of an interval.
Arguments are the interval and on return the lower bound.

36

